Lab-grown ‘mini-brains’ to detect antidepressant harms on human brain

#Act4
LabAnimals

Lab-grown ‘mini-brains’ to detect antidepressant harms on human brain

31 July 2020
News
Researchers at Johns Hopkins Bloomberg School of Public Health have demonstrated the use of stem-cell-derived "mini-brains" to detect harmful side effects of a common drug on the developing brain. Mini-brains are miniature human brain models, developed with human stem cells and barely visible to the human eye, whose cellular mechanisms mimic those of the developing human brain.

The study authors say that the findings suggest that lab-grown mini-brains, which they call BrainSpheres, are a good alternative to traditional animal testing. In particular, they can reveal drugs and other chemicals that are harmful to young brains.

"There's a growing concern that we have an epidemic of neurodevelopmental disorders, including autism, and that these might be caused by exposures to common drugs or other chemicals. However, since traditional animal testing is so expensive, we haven't been able to properly investigate this question," says co-senior author Thomas Hartung, professor and chair of the Department of Environmental Health and Engineering and director of the Center for Alternatives to Animal Testing at the Bloomberg School.

Hartung and colleagues developed the mini-brains to model early brain development. The tiny clumps of brain tissue are made by taking cells from adult humans, often from their skin, and transforming them into stem cells, and then biochemically nudging the stem cells to develop into young brain cells. The mini-brains form a rudimentary brain-like organization over a period of a few months. Because they are made of human cells, they may be more likely to predict effects on the human brain—and because they can be mass-produced in the lab, they are much cheaper to work with than animals.